Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemistry ; : e202302758, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010268

RESUMO

The interactions of glycosaminoglycans (GAG) with proteins of the extracellular matrix govern and regulate complex physiological functions including cellular growth, immune response, and inflammation. Repetitive presentation of GAG binding motifs, as found in native proteoglycans, might enhance GAG-protein binding through multivalent interactions. Here, we report the chemical synthesis of dendritic GAG oligomers constructed of nonasulfated hyaluronan tetrasaccharides for investigating the binding of the protein chemokine interleukin 8 (IL-8) to artificial, well-defined proteoglycan architectures. Binding of mutant monomeric and native dimerizable IL-8 was investigated by NMR spectroscopy and isothermal titration calorimetry. Dendritic oligomerization of GAG increased the binding affinity of both monomeric and dimeric IL-8. Monomeric IL-8 bound to monomeric and dimeric GAG with KD values of 7.3 and 0.108 µM, respectively. The effect was less pronounced for dimerizable wild-type IL-8, for which GAG dimerization improved the affinity from 34 to 5 nM. Binding of dimeric IL-8 to oligomeric GAG was limited by steric crowding effects, strongly reducing the affinity of subsequent binding events. In conclusion, the strongest effect of GAG oligomerization was the amplified binding of IL-8 monomers, which might concentrate monomeric protein in the extracellular matrix and thus promote protein dimerization under physiological conditions.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37895872

RESUMO

Ascidians are marine invertebrates that synthesize sulfated glycosaminoglycans (GAGs) within their viscera. Ascidian GAGs are considered analogues of mammalian GAGs and possess great potential as bioactive compounds, presenting antitumoral and anticoagulant activity. Due to its worldwide occurrence and, therefore, being a suitable organism for large-scale mariculture in many marine environments, our main objectives are to study Microcosmus exasperatus GAGs regarding composition, structure, and biological activity. We also aim to develop efficient protocols for sulfated polysaccharides extraction and purification for large-scale production and clinical applications. GAGs derived from M. exasperatus viscera were extracted by proteolytic digestion, purified by ion-exchange liquid chromatography, and characterized by agarose gel electrophoresis and enzymatic treatments. Anticoagulant activity was evaluated by APTT assays. Antitumoral activity was assessed in an in vitro model of tumor cell culture using MTT, clonogenic, and wound healing assays, respectively. Our results show that M. exasperatus presents three distinct polysaccharides; among them, two were identified: a dermatan sulfate and a fucosylated dermatan sulfate. Antitumoral activity was confirmed for the total polysaccharides (TP). While short-term incubation does not affect tumor cell viability at low concentrations, long-term TP incubation decreases LLC tumor cell growth/proliferation at different concentrations. In addition, TP decreased tumor cell migration at different concentrations. In conclusion, we state that M. exasperatus presents great potential as an alternative GAG source, producing compounds with antitumoral properties at low concentrations that do not possess anticoagulant activity and do not enhance other aspects of malignancy, such as tumor cell migration. Our perspectives are to apply these molecules in future preclinical studies for cancer treatment as antitumoral agents to be combined with current treatments to potentiate therapeutic efficacy.

3.
Front Bioeng Biotechnol ; 11: 1253804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790257

RESUMO

Limited availability of the organs donors has facilitated the establishment of xenogeneic organ sources for transplantation. Numerous studies have decellularized several organs and assessed their implantability in order to provide such organs. Among all the decellularized organs studies for xenotransplantation, the pancreas has garnered very limited amount of research. The presently offered alternatives for pancreas transplantation are unable to liberate patients from donor dependence. The rat and mice pancreas are not of an accurate size for transplantation but can only be used for in-vitro studies mimicking in-vivo immune response in humans, while the porcine pancreas can cause zoonotic diseases as it carries porcine endogenous retrovirus (PERV- A/B/C). Therefore, we propose caprine pancreas as a substitute for these organs, which not only reduces donor dependence but also poses no risk of zoonosis. Upon decellularization the extracellular matrix (ECM) of different tissues responds differently to the detergents used for decellularization at physical and physiological level; this necessitates a comprehensive analysis of each tissue independently. This study investigates the impact of decellularization by ionic (SDS and SDC), non-ionic (Triton X-100 and Tween-20), and zwitterionic detergents (CHAPS). All these five detergents have been used to decellularize caprine pancreas via immersion (ID) and perfusion (PD) set-up. In this study, an extensive comparison of these two configurations (ID and PD) with regard to each detergent has been conducted. The final obtained scaffold with each set-up has been evaluated for the left-over cytosolic content, ECM components like sGAG, collagen, and fibronectin were estimated via Prussian blue and Immunohistochemical staining respectively, and finally for the tensile strength and antimicrobial activity. All the detergents performed consistently superior in PD than in ID. Conclusively, PD with SDS, SDC, and TX-100 successfully decellularizes caprine pancreatic tissue while retaining ECM architecture and mechanical properties. This research demonstrates the viability of caprine pancreatic tissue as a substitute scaffold for porcine organs and provides optimal decellularization protocol for this xenogeneic tissue. This research aims to establish a foundation for further investigations into potential regenerative strategies using this ECM in combination with other factors.

4.
Carbohydr Res ; 529: 108832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37192581

RESUMO

Heparin-like sulfated polysaccharide, acharan sulfate, was purified from the mucus of an African giant snail with unique sulfated glycosaminoglycans (GAGs). This study reported on finding novel and safe heparin resources from Achatina fulica for further use as well as easy isolation and purification of the active fraction from the initial raw material. Its structure was characterised by a strong-anion exchange combined with high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the potential acharan sulfate fraction is a glycosaminoglycan composed of several repeating disaccharide units, namely, of →4)-α-IdoA(2S)(1→4)-α-GlcNAc/GlcNAc(6S)/GlcNSO3(6S)(1→, and hence, presents heterogeneity regarding negative net charge density. Furthermore, the heparinase digests inhibit the binding of SARS-CoV-2 spike protein to the ACE2 receptor. In summary, the acharan sulfate presented in this work has shown its great potential for application in the preparation of sulfated polysaccharides as an alternative to heparin with important biological activity.


Assuntos
COVID-19 , Heparina , Animais , Humanos , Heparina/química , Sulfatos , SARS-CoV-2 , Glicosaminoglicanos/farmacologia , Glicosaminoglicanos/química , Polissacarídeos/química , Caramujos/química , Caramujos/metabolismo , Muco/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768397

RESUMO

Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn activate the secretion of anti-inflammatory signaling molecules and attract cells and mediators that antagonize the inflammation and initiate the repair phase. Sulfated glycosaminoglycanes (sGAG) are known to interact with cytokines, chemokines and growth factors and, thus, alter the availability, duration and impact of those mediators on the local molecular level. sGAG-coated polycaprolactone-co-lactide (PCL) scaffolds were inserted into critical-size femur defects in adult male Wistar rats. The femur was stabilized with a plate, and the defect was filled with either sGAG-containing PCL scaffolds or autologous bone (positive control). Wound fluid samples obtained by microdialysis were characterized regarding alterations of cytokine concentrations over the first 24 h after surgery. The analyses revealed the inhibition of the pro-inflammatory cytokines IL-1ß and MIP-2 in the sGAG-treated groups compared to the positive control. A simultaneous increase of IL-6 and TNF-α indicated advanced regenerative capacity of sGAG, suggesting their potential to improve bone healing.


Assuntos
Citocinas , Sulfatos , Ratos , Animais , Masculino , Microdiálise , Ratos Wistar , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
6.
Adv Healthc Mater ; 12(17): e2203011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36841552

RESUMO

Pancreatic cancer renders a principal cause of cancer mortalities with a dismal prognosis, lacking sufficiently safe and effective therapeutics. Here, diversified cyclodiaryliodonium (CDAI) NADPH oxidase (NOX) inhibitors are rationally designed with tens of nanomolar optimal growth inhibition, and CD44-targeted delivery is implemented using synthesized sulfated glycosaminoglycan derivatives. The self-assembled nanoparticle-drug conjugate (NDC) enables hyaluronidase-activatable controlled release and facilitates cellular trafficking. NOX inhibition reprograms the metabolic phenotype by simultaneously impairing mitochondrial respiration and glycolysis. Moreover, the NDC selectively diminishes non-mitochondrial reactive oxygen species (ROS) but significantly elevates cytotoxic ROS through mitochondrial membrane depolarization. Transcriptomic profiling reveals perturbed p53, NF-κB, and GnRH signaling pathways interconnected with NOX inhibition. After being validated in patient-derived pancreatic cancer cells, the anticancer efficacy is further verified in xenograft mice bearing heterotopic and orthotopic pancreatic tumors, with extended survival and ameliorated systemic toxicity. It is envisaged that the translation of cyclodiaryliodonium inhibitors with an optimized molecular design can be expedited by enzyme-activatable targeted delivery with improved pharmacokinetic profiles and preserved efficacy.


Assuntos
NADPH Oxidases , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glicosaminoglicanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
7.
Methods Mol Biol ; 2598: 115-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355288

RESUMO

The 1,9-dimethylmethylene blue (DMMB) assay enables the detection of sulfated glycosaminoglycans (sGAGs). This assay can be used to quickly quantify the sGAG content in a large number of samples using spectrophotometry. While this widespread assay appears straightforward, there are certain pitfalls that need to be considered.


Assuntos
Glicosaminoglicanos , Azul de Metileno , Espectrofotometria
8.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361933

RESUMO

The enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) was originally identified as a lysosomal enzyme which was deficient in Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy Syndrome). The newly directed attention to the impact of ARSB in human pathobiology indicates a broader, more pervasive effect, encompassing roles as a tumor suppressor, transcriptional mediator, redox switch, and regulator of intracellular and extracellular-cell signaling. By controlling the degradation of chondroitin 4-sulfate and dermatan sulfate by removal or failure to remove the 4-sulfate residue at the non-reducing end of the sulfated glycosaminoglycan chain, ARSB modifies the binding or release of critical molecules into the cell milieu. These molecules, such as galectin-3 and SHP-2, in turn, influence crucial cellular processes and events which determine cell fate. Identification of ARSB at the cell membrane and in the nucleus expands perception of the potential impact of decline in ARSB activity. The regulation of availability of sulfate from chondroitin 4-sulfate and dermatan sulfate may also affect sulfate assimilation and production of vital molecules, including glutathione and cysteine. Increased attention to ARSB in mammalian cells may help to integrate and deepen our understanding of diverse biological phenomenon and to approach human diseases with new insights.


Assuntos
Mucopolissacaridose VI , N-Acetilgalactosamina-4-Sulfatase , Humanos , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato , Mucopolissacaridose VI/genética , Mucopolissacaridose VI/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sulfatos
9.
Adv Immunol ; 156: 55-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410875

RESUMO

The cGAS-STING pathway is responsible for cytoplasmic double-stranded DNA (dsDNA) -triggered innate immunity and involved in the pathology of various diseases including infection, autoimmune diseases, neurodegeneration and cancer. Understanding the activation and regulatory mechanisms of this pathway is critical to develop therapeutic strategies toward these diseases. Here, we review the signal transduction, cellular functions and regulations of cGAS and STING, particularly highlighting the latest understandings on the activation of cGAS by dsDNA and/or Manganese (Mn2+), STING trafficking, sulfated glycosaminoglycans (sGAGs)-induced STING polymerization and activation, and also regulation of the cGAS-STING pathway by different biocondensates formed via phase separation of proteins from host cells and viruses.


Assuntos
Doenças Autoimunes , Proteínas de Membrana , Humanos , Animais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Imunidade Inata , Transdução de Sinais
10.
J Mol Cell Biol ; 14(6)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-35803579

RESUMO

The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthetase (cGAS)-stimulator of interferon genes (STING) pathway, comprising the DNA sensor cGAS, the second messenger cyclic GMP-AMP (cGAMP), and the endoplasmic reticulum (ER) adaptor protein STING, detects cytoplasmic double-stranded DNA (dsDNA) to trigger type I-interferon responses for host defense against pathogens. Previous studies defined a model for the allosteric activation of cGAS by DNA-binding, but recent work reveals other layers of mechanisms to regulate cGAS activation such as the phase condensation and metal ions, especially the discovery of Mn2+ as a cGAS activator. Activation of the 2'3'-cGAMP sensor STING requires translocating from the ER to the Golgi apparatus. The sulfated glycosaminoglycans at the Golgi are found to be the second STING ligand promoting STING oligomerization and activation in addition to 2'3'-cGAMP, while surpassed levels of 2'3'-cGAMP induce ER-located STING to form a highly organized ER membranous condensate named STING phase-separator to restrain STING activation. Here, we summarize recent advances in the regulation of cGAS-STING activation and their implications in physiological or pathological conditions, particularly focusing on the emerging complexity of the regulation.


Assuntos
Interferon Tipo I , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , DNA/metabolismo , Imunidade Inata
11.
Mol Cell Biochem ; 477(8): 2025-2032, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35419768

RESUMO

In utero hyperglycemia has consequences on future outcomes in the offsprings. We had earlier shown that in utero hyperglycemia impacts proteoglycans/glycosaminoglycans, one of the key molecules involved in brain development. Hypothalamic HSPGs such as syndecan-1 and syndecan-3 are well known for their involvement in feeding behavior. Therefore, studies were carried out to determine the effect of maternal hyperglycemia on the expression of HSPGs in the hypothalamus of offspring brain. Results revealed increased protein abundance of Syndecan-1 and -3 as well as glypican-1 in postnatal adults from hyperglycemic mothers. This was associated with increased hyperphagia and increased expression of Neuropeptide Y. These results indicate the likely consequences on offsprings exposed to in utero hyperglycemia on its growth.


Assuntos
Hiperglicemia , Sindecana-1 , Adulto , Cinamatos , Feminino , Heparitina Sulfato/metabolismo , Humanos , Hiperfagia , Hipotálamo/metabolismo , Glicoproteínas de Membrana/metabolismo , Mães , Sindecana-1/metabolismo , Tiadiazóis
12.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216006

RESUMO

Coronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed. In this study, we characterize the antiviral effects of two high-sulfated glycosaminoglycan (GAG) derivatives against SARS-CoV-2 and bovine coronaviruses (BCoV), which are both members of the Betacoronavirus genus. The investigated compounds are based on hyaluronan (HA) and chondroitin sulfate (CS) and exhibit a strong inhibitory effect against both CoVs. Yield assays were performed using BCoV-infected PT cells in the presence and absence of the compounds. While the high-sulfated HA (sHA3) led to an inhibition of viral growth early after infection, high-sulfated CS (sCS3) had a slightly smaller effect. Time of addition assays, where sHA3 and sCS3 were added to PT cells before, during or after infection, demonstrated an inhibitory effect during all phases of infection, whereas sHA3 showed a stronger effect even after virus absorbance. Furthermore, attachment analyses with prechilled PT cells revealed that virus attachment is not blocked. In addition, sHA3 and sCS3 inactivated BCoV by stable binding. Analysis by quantitative real-time RT PCR underlines the high potency of the inhibitors against BCoV, as well as B.1-lineage, Alpha and Beta SARS-CoV-2 viruses. Taken together, these results demonstrated that the two high-sulfated GAG derivatives exhibit low cytotoxicity and represent promising candidates for an anti-CoV therapy.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/veterinária , Coronavirus Bovino/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Sulfatos/química , Sulfatos/farmacologia , Ligação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
13.
Nutr Res ; 93: 50-60, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34365197

RESUMO

In utero insults to growing fetus impact its health in adulthood. Glycosaminoglycans (GAGs) are involved in lipoprotein metabolism in the liver and vary both quantitively and qualitatively on feeding adult rats a diet rich in cholesterol. However, no reports are available to show the modulation of GAGs when the offspring are subjected to a high cholesterol diet in gestation and lactation stages. Hypercholesterolemia in pregnant rats was induced by feeding an AIN-93 diet supplemented with 0.5% cholesterol. The pups born to mothers fed with high cholesterol diet showed a significant increase in cholesterol and triglycerides accumulation in the liver. Quantitative changes in sulfated glycosaminoglycans (sGAGs), in particular of heparan sulfate, were observed across the developmental stages. Other players involved in lipoprotein metabolism, namely low-density lipoprotein receptor-related protein 1, apolipoprotein E, and low-density lipoprotein receptor expression levels, also showed differential changes across developmental stages. Interestingly, when pups from hypercholesterolemic mothers were fed a normal diet after weaning until adulthood, a considerable amount of fat accumulation in the liver was observed, implicating fetal exposure to early high cholesterol exposure on long term health.


Assuntos
Hipercolesterolemia , Receptores de Lipoproteínas , Animais , Colesterol , Dieta , Feminino , Glicosaminoglicanos , Lactação , Fígado , Gravidez , Ratos
14.
Biol Chem ; 402(11): 1453-1464, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34218538

RESUMO

The delivery of chemotactic signaling molecules via customized biomaterials can effectively guide the migration of cells to improve the regeneration of damaged or diseased tissues. Here, we present a novel biohybrid hydrogel system containing two different sulfated glycosaminoglycans (sGAG)/sGAG derivatives, namely either a mixture of short heparin polymers (Hep-Mal) or structurally defined nona-sulfated tetrahyaluronans (9s-HA4-SH), to precisely control the release of charged signaling molecules. The polymer networks are described in terms of their negative charge, i.e. the anionic sulfate groups on the saccharides, using two parameters, the integral density of negative charge and the local charge distribution (clustering) within the network. The modulation of both parameters was shown to govern the release characteristics of the chemotactic signaling molecule SDF-1 and allows for seamless transitions between burst and sustained release conditions as well as the precise control over the total amount of delivered protein. The obtained hydrogels with well-adjusted release profiles effectively promote MSC migration in vitro and emerge as promising candidates for new treatment modalities in the context of bone repair and wound healing.


Assuntos
Quimiocina CXCL12/metabolismo , Glicosaminoglicanos/metabolismo , Hidrogéis/metabolismo , Quimiocina CXCL12/química , Glicosaminoglicanos/química , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Estrutura Molecular
15.
Biol Chem ; 402(11): 1325-1335, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34218546

RESUMO

Wound healing and tissue regeneration are orchestrated by the cellular microenvironment, e.g. the extracellular matrix (ECM). Including ECM components in biomaterials is a promising approach for improving regenerative processes, e.g. wound healing in skin. This review addresses recent findings for enhanced epidermal-dermal regenerative processes on collagen (coll)/glycosaminoglycan (GAG)-based matrices containing sulfated GAG (sGAG) in simple and complex in vitro models. These matrices comprise 2D-coatings, electrospun nanofibrous scaffolds, and photo-crosslinked acrylated hyaluronan (HA-AC)/coll-based hydrogels. They demonstrated to regulate keratinocyte and fibroblast migration and growth, to stimulate melanogenesis in melanocytes from the outer root sheath (ORS) of hair follicles and to enhance the epithelial differentiation of human mesenchymal stem cells (hMSC). The matrices' suitability for delivery of relevant growth factors, like heparin-binding epidermal growth factor like growth factor (HB-EGF), further highlights their potential as bioinspired, functional microenvironments for enhancing skin regeneration.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Pele/metabolismo , Colágeno/química , Matriz Extracelular/química , Glicosaminoglicanos/química , Humanos , Pele/citologia
16.
Immunity ; 54(5): 962-975.e8, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33857420

RESUMO

Activation of the cyclic guanosine monophosphate (GMP)-AMP (cGAMP) sensor STING requires its translocation from the endoplasmic reticulum to the Golgi apparatus and subsequent polymerization. Using a genome-wide CRISPR-Cas9 screen to define factors critical for STING activation in cells, we identified proteins critical for biosynthesis of sulfated glycosaminoglycans (sGAGs) in the Golgi apparatus. Binding of sGAGs promoted STING polymerization through luminal, positively charged, polar residues. These residues are evolutionarily conserved, and selective mutation of specific residues inhibited STING activation. Purified or chemically synthesized sGAGs induced STING polymerization and activation of the kinase TBK1. The chain length and O-linked sulfation of sGAGs directly affected the level of STING polymerization and, therefore, its activation. Reducing the expression of Slc35b2 to inhibit GAG sulfation in mice impaired responses to vaccinia virus infection. Thus, sGAGs in the Golgi apparatus are necessary and sufficient to drive STING polymerization, providing a mechanistic understanding of the requirement for endoplasmic reticulum (ER)-to-Golgi apparatus translocation for STING activation.


Assuntos
Glicosaminoglicanos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetinae , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Camundongos , Polimerização , Transdução de Sinais/fisiologia , Transportadores de Sulfato/metabolismo , Vaccinia/metabolismo , Vírus Vaccinia/patogenicidade
17.
J Clin Med ; 10(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923501

RESUMO

The described research focused on the diagnostic usefulness of sulfated glycosaminoglycans (sGAG), hyaluronan (HA), and extracellular part of syndecan-1 (sCD138) as new markers related to extracellular matrix (ECM) remodeling in the intestine during the two most common forms of inflammatory bowel diseases (IBD), i.e., ulcerative colitis (UC) and Crohn' disease (CD). Inflammatory markers belonging to ECM components were assessed in serum of patients with IBD using an immunoenzymatic method (HA and sCD138) and a method based on the reaction with dimethylmethylene blue (sulfated GAG). Measurements were carried out twice: at baseline and after one year of therapy with prednisone (patients with CD) or adalimumab (patients with UC). No quantitative changes were observed in serum sGAG, HA, and sCD138 concentrations between patients newly diagnosed with CD and the healthy group. In the case of patients with UC, the parameter which significantly differentiated healthy subjects and patients with IBD before biological therapy was HA. Significant correlation between serum HA level and inflammation activity, expressed as Mayo score, was also observed in patients with UC. Moreover, the obtained results have confirmed that steroid therapy with prednisone significantly influenced the circulating profile of all examined ECM components (sGAG, HA, and sCD138), whereas adalimumab therapy in patients with UC led to a significant change in only circulating sGAG levels. Moreover, the significant differences in serum HA levels between patients with UC and CD indicate that quantification of circulating HA may be useful in the differential diagnosis of CD and UC.

18.
Virology ; 555: 19-34, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422703

RESUMO

Enterovirus A71 (EV-A71) is a causative agent of hand, foot and mouth disease and occasionally causes death in children. Its infectivity and pathogenesis, however, remain to be better understood. Three sulfonated azo dyes, including acid red 88 (Ar88), were identified to enhance the infectivity of EV-A71, especially isolates with VP1-98K, 145E (-KE), by mainly promoting viral genome release in vitro. Enzymatic removal of sulfated glycosaminoglycans (GAGs) or knockout of xylosyltransferase II (XT2) responsible for biosynthesis of sulfated GAGs weakened the Ar88 enhanced EV-A71 infection. Ar88 is proposed to prevent the -KE variants from being trapped by sulfated GAGs at acidic pH and to facilitate the viral interaction with uncoating factors for genome release in endosomes. The results suggest dual roles of sulfated GAGs as attachment factors and as decoys during host interaction of EV-A71 and caution that these artificial dyes in our environment can enhance viral infection.


Assuntos
Compostos Azo/toxicidade , Enterovirus Humano A , Poluentes Ambientais/toxicidade , Glicosaminoglicanos/toxicidade , Doença de Mão, Pé e Boca/virologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Enterovirus Humano A/metabolismo , Enterovirus Humano A/patogenicidade , Humanos , Células Vero
19.
Artigo em Inglês | MEDLINE | ID: mdl-32226783

RESUMO

Blood-contacting medical devices of different biomaterials are often used to treat various cardiovascular diseases. Thrombus formation is a common cause of failure of cardiovascular devices. Currently, there are no clinically available biomaterials that can totally inhibit thrombosis under the more challenging environments (e.g., low flow in the venous system). Although some biomaterials reduce protein adsorption or cell adhesion, the issue of biomaterial associated with thrombosis and inflammation still exists. To better understand how to develop more thrombosis-resistant medical devices, it is essential to understand the biology and mechano-transduction of thrombus nucleation and progression. In this review, we will compare the mechanisms of thrombus development and progression in the arterial and venous systems. We will address various aspects of thrombosis, starting with biology of thrombosis, mathematical modeling to integrate the mechanism of thrombosis, and thrombus formation on medical devices. Prevention of these problems requires a multifaceted approach that involves more effective and safer thrombolytic agents but more importantly the development of novel thrombosis-resistant biomaterials mimicking the biological characteristics of the endothelium and extracellular matrix tissues that also ameliorate the development and the progression of chronic inflammation as part of the processes associated with the detrimental generation of late thrombosis and neo-atherosclerosis. Until such developments occur, engineers and clinicians must work together to develop devices that require minimal anticoagulants and thrombolytics to mitigate thrombosis and inflammation without causing serious bleeding side effects.

20.
Medicines (Basel) ; 6(3)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362364

RESUMO

The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...